PSG Signal Generators

	Option 520 250 kHz to 20 GHz	Option 540 250 kHz to 40 GHz
CW only	E8247C	E8247C
Analog	E8257C	E8257C
Vector	E8267C	

(See E8267C data sheet for PSG vector signal generator specifications)

All specifications and characteristics apply over a 0 to $55^{\circ} \mathrm{C}$ range (unless otherwise stated) and apply after a 45 minute warm-up time. Supplemental characteristics, denoted as typical or nominal, provide additional (non-warranted) information.

Definitions

Specifications (spec): represent warranted performance.
Typical (typ): performance is not warranted. It applies at $25^{\circ} \mathrm{C}$. A minimum of 80% of all products meet typical performance.

Nominal (nom): values are not warranted. They represent the value of a parameter that is most likely to occur; the expected or mean value. They are included to facilitate the application of the product.

Standard (std): No options are included when referring to the signal generator unless noted otherwise.
Table of Contents
Specifications 3
Frequency 3
Digital sweep 4
Ramp (analog) sweep 4
Output 5
Spectral purity 7
Frequency modulation 9
Phase modulation 9
Amplitude modulation 10
External modulation inputs 10
Simultaneous modulation 10
Internal modulation source 10
Pulse modulation 11
Internal pulse generator 12
Remote programming 13
General specifications 13
Input/Output Descriptions 14
Front panel connectors 14
Rear panel connectors 14
Options, Accessories, and Related Products 15
Web Resources 16
Related Agilent Literature 16

Specifications

Frequency

Range ${ }^{1}$		
Option 520	250 kHz to 20 GHz	
Option 540	250 kHz to 40 GHz	
Resolution		
CW	$0.001 \mathrm{~Hz}^{2}$	
All Sweep modes	0.01 Hz	
Accuracy	Aging rate \pm temperature effects \pm line voltage effects	
Switching speed ${ }^{3}$	< 12 ms (typical)	
Phase offset	Adjustable in nominal 0.1° increments.	
Frequency bands		
Band	Frequency range	N \#
1	250 kHz to 250 MHz	1/8
2	> 250 to 500 MHz	1/16
3	$>500 \mathrm{MHz}$ to 1 GHz	1/8
4	>1 to 2 GHz	1/4
5	>2 to 3.2 GHz	1/2
6	>3.2 to 10 GHz	1
7	>10 to 20 GHz	2
8	>20 to 40 GHz	4

Internal timebase reference oscillator

Aging rate	Standard	Option UNR
	$< \pm 1 \times 10^{-7} /$ year or	$< \pm 3 \times 10^{-8} / \mathrm{year}$ or
	$< \pm 4.5 \times 10^{-9} /$ day	$< \pm 2.5 \times 10^{-10} /$ day
	after 45 days	after 30 days
Temperature effects (typical)	$< \pm 5 \times 10^{-8} 0$ to $55^{\circ} \mathrm{C}$	$< \pm 4.5 \times 10^{-9} 0$ to $55^{\circ} \mathrm{C}$
Line voltage effects (typical)	$< \pm 2 \times 10^{-9}$ for	$< \pm 2 \times 10^{-10}$ for
	+5\% -10\% change	$\pm 10 \%$ change
External reference frequency	1, 2, 2.5, 5, 10 MHz	10 MHz only
	(within 0.2 ppm)	(within 1 ppm)
Reference output		
Frequency	10 MHz	
Amplitude	$>+4 \mathrm{dBm}$ into 50Ω load (typical)	
External reference input		
Amplitude	$>-3 \mathrm{dBm}$	
Opt UNR	$5 \mathrm{dBm} \pm 5 \mathrm{~dB}{ }^{4}$	
Input impedance	50Ω (nominal)	

[^0]
Digital sweep

Ramp (analog) sweep (Option 007) ${ }^{1}$

Operating modes	Step sweep of frequency or amplitude or both (start to stop) List sweep of frequency or amplitude or both (arbitrary list)	
Sweep range		
Frequency sweep	Within instrument frequency range	
Amplitude sweep	Within attenuator hold range	
Dwell time	1 ms to 60 s	
Number of points	2 to 1601 (step sweep)	
2 to 1601 per table (list sweep)		
Triggering	Auto, external, single, or GPIB	
Operating modes	Synthesized frequency sweep (start/stop), (center/span), (swept CW)	
	Power (amplitude) sweep (start/stop)	
	Manual sweep	
	RPG control between start and stop frequencies	
	Alternate sweep	
	Alternates successive sweeps between current and stored states	
Sweep span range	Settable from minimum ${ }^{2}$ to full range	
Maximum sweep rate	Start frequency	Maximum sweep rate Max span for 100 ms sweep
	250 kHz to < 0.5 GHz	$25 \mathrm{MHz} / \mathrm{ms} \quad 2.5 \mathrm{GHz}$
	0.5 to < 1 GHz	$50 \mathrm{MHz} / \mathrm{ms} \quad 5 \mathrm{GHz}$
	1 to $<2 \mathrm{GHz}$	$100 \mathrm{MHz} / \mathrm{ms} \quad 10 \mathrm{GHz}$
	2 to <3.2 GHz	$200 \mathrm{MHz} / \mathrm{ms} \quad 20 \mathrm{GHz}$
	$\geq 3.2 \mathrm{GHz}$	$400 \mathrm{MHz} / \mathrm{ms} \quad 36.8 \mathrm{GHz}$
Frequency accuracy	$\pm 0.05 \%$ of span \pm timebase (at 100 ms sweep time, for sweep spans less than maximum values given above)	
	Accuracy improves proportionally as sweep time increases ${ }^{3}$	
Sweep time	(forward sweep, not including bandswitch and retrace intervals)	
Resolution	1 ms	
Manual mode	Settable 10 ms to 99 seconds	
Auto mode	Set to minimum value determined by maximum sweep rate and 8757 D setting	
Triggering	Auto, external, single, or GPIB	
Markers	10 independent continuously variable frequency markers	
Display	Z-axis intensity or RF amplitude pulse	
Functions	M1 to center, M	1/M2 to start/stop, marker delta
Two-tone (master/slave)		
measurements ${ }^{4}$	Two PSG's can synchronously track each other, with independent control of start/stop frequencies	
Network analyzer comp	Fully compatible with Agilent 8757D scalar network analyzer ${ }^{5}$ Also useable with Agilent 8757A/C/E scalar network analyzers for making basic swept measurements. ${ }^{6}$	

[^1]
Output

Power ${ }^{1}$ (dBm)		
Frequency range	Standard	Option 1EA
20 GHz models		
250 kHz to 3.2 GHz	-20 to +13	-20 to +16
250 kHz to 3.2 GHz (with Option 1E6)	-20 to +13	-20 to +13
> 3.2 to 20 GHz	-20 to +13	-20 to +20
40 GHz models		
250 kHz to 3.2 GHz	-20 to +9	-20 to +15
250 kHz to 3.2 GHz (with Option 1E6)	-20 to +9	-20 to +12
> 3.2 to 20 GHz	-20 to +9	-20 to +18
> 20 to 40 GHz	-20 to +9	-20 to +14
$\mathbf{2 0 ~ G H z}$ models with step attenuator (Option 1E1)		
250 kHz to 3.2 GHz	-135 to +11	-135 to +15
250 kHz to 3.2 GHz (with Option 1E6)	-135 to +11	-135 to +12
> 3.2 to 20 GHz	-135 to +11	-135 to +18
40GHz models with step attenuator (Option 1E1)		
250 kHz to 3.2 GHz	-135 to +7	-135 to +14
250 kHz to 3.2 GHz (with Option 1E6)	-135 to +7	-135 to +11
> 3.2 to 20 GHz	-135 to +7	-135 to +16
>20 to 40 GHz	-135 to +7	-135 to +12
Step attenuator	0 dB and 5 to 115 dB in 10 dB steps ${ }^{3}$ (Option 1E1)	

20 GHz models with Option 1EA
Measured maximum available power

40 GHz models with Option 1EA
Measured maximum available power

| Attenuator hold range
 Minimum | (Same as max power sweep range)
 From -20 dBm to maximum specified output power with
 step attenuator in 0 dB position. Can be offset using
 Option 1E1 attenuator. |
| :--- | :--- | :--- |
| Amplitude switching speed ${ }^{\mathbf{2}}$ | |

[^2]
Level accuracy with step attenuator ${ }^{1}$ (dB)

Frequency	$>+\mathbf{1 0} \mathbf{~ d B m}$	$\mathbf{+ 1 0} \mathbf{t 0} \mathbf{- 1 0} \mathbf{~ d B m}$	$\mathbf{- 1 0} \mathbf{t 0} \mathbf{- 7 0} \mathbf{~ d B m}$	$\mathbf{- 7 0}$ to $\mathbf{- 9 0} \mathbf{~ d B m}$	$\mathbf{- 9 0} \mathbf{~ t 0 ~} \mathbf{- 1 1 0 ~ d B m}$
250 kHz to 2 GHz	± 0.6	± 0.6	± 0.7	± 0.8	± 1.4
>2 to 20 GHz	± 0.8	± 0.8	± 0.9	± 1.0	± 1.7
$\mathbf{>} 20$ to 40 GHz	± 1.0	± 0.9	± 1.0	± 2.0	

20 GHz level accuracy

40 GHz level accuracy

Resolution	0.01 dB
Temperature stability	$0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typical)
User flatness correction	
Number of points	2 to 1601 points/table
Number of tables	Up to 10,000, memory limited
Path loss	Arbitrary, within attenuator range
Entry modes (user edit/view)	Remote power meter ${ }^{2}$, remote bus, manual
Output impedance	50Ω (nominal)
SWR (internally leveled) (typical)	
250 kHz to 2 GHz	< 1.4:1
$>2 \mathrm{GHz}$ to 20 GHz	< 1.6:1
$\geq 20 \mathrm{GHz}$ to 40 GHz	< 1.8:1
Leveling modes	Internal leveling, external detector leveling, millimeter source module, ALC Off
External detector leveling	
Range	-0.2 mV to -0.5 V (nominal) (-36 dBm to +4 dBm using Agilent $333330 \mathrm{D} / \mathrm{E}$ detector)
Bandwidth	10 kHz (typical) (Note: not intended for pulsed operation)
Maximum reverse power	1/2 Watt (nominal)

[^3]
Spectral purity

Harmonics $^{\mathbf{1}}$	(dBc at +10 dBm or maximum specified output
power, whichever is lower)	
$<1 \mathrm{MHz}$	-28 dBc (typical)
1 MHz to 2 GHz	-28 dBc
$>2 \mathrm{GHz}$ to 20 GHz	-55 dBc
$>20 \mathrm{GHz}$ to 40 GHz	-50 dBc (typical)

20 GHz measured harmonics . 40 GHz measured harmonics

[^4]| Offset from carrier ($\mathrm{dBc} / \mathrm{Hz}$) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Frequency | $100 \mathrm{~Hz}$
 spec (typical) | $1 \text { kHz }$
 spec (typical) | 10 kHz
 spec (typical) | 100 kHz spec (typical) |
| 250 kHz to 250 MHz | -94 (-115) | -110 (-123) | -128 (-132) | -130 (-133) |
| > 250 to 500 MHz | -100 (-110) | -124 (-130) | -132 (-136) | -136 (-141) |
| $>500 \mathrm{MHz}$ to 1 GHz | -94 (-104) | -118 (-126) | -130 (-135) | -130 (-135) |
| >1 to 2 GHz | -88 (-98) | -112 (-120) | -124 (-129) | -124 (-129) |
| > 2 to 3.2 GHz | -84 (-94) | -108 (-116) | -120 (-125) | -120 (-125) |
| >3.2 to 10 GHz | -74 (-84) | -98 (-106) | -110 (-115) | -110 (-115) |
| >10 to 20 GHz | -68 (-78) | -92 (-100) | -104 (-107) | -104 (-109) |
| ≥ 20 to 40 GHz | -62 (-72) | -86 (-94) | -98 (-101) | -98 (-103) |
| Residual FM | | | | |
| CW mode | | $<\mathrm{N} \times 6 \mathrm{~Hz}$ (ty | | |
| Option UNR | | $<\mathrm{Nx} 4 \mathrm{~Hz}$ (ty | | |
| Ramp sweep mode: (rms, 50 Hz to 15 kHz | andwidth) | < N x 1 kHz (t | | |

Broadband noise (CW mode at +10 dBm output, for offsets > 10 MHz)

>2.4 to 20 GHz	$<-148 \mathrm{dBc} / \mathrm{Hz}$ (typical)
>20 to 40 GHz	$<-141 \mathrm{dBc} / \mathrm{Hz}$ (typical)

Measured phase noise

Standard product

Measured Standard vs. Option UNR at $\mathbf{1 0} \mathbf{~ G H z}$

Option UNR

Measured AM noise at $\mathbf{1 0} \mathbf{~ G H z}$

Typical rms jitter: ${ }^{1}$				
Standard				
Carrier frequency	SONET/SDH data rates	rms jitter bandwidth	Unit intervals ($\mu \mathrm{UI}$)	Time (fs)
155 MHz	$155 \mathrm{MB} / \mathrm{s}$	100 Hz to 1.5 MHz	48	303
622 MHz	$622 \mathrm{MB} / \mathrm{s}$	1 kHz to 5 MHz	34	50
2.488 GHz	2488 MB/s	5 kHz to 15 MHz	65	25
9.953 GHz	$9953 \mathrm{MB} / \mathrm{s}$	20 kHz to 80 MHz	173	16
Option UNR				
Carrier frequency	SONET/SDH data rates	rms jitter bandwidth	Unit intervals ($\mu \mathrm{UI}$)	Time (fs)
155 MHz	$155 \mathrm{MB} / \mathrm{s}$	100 Hz to 1.5 MHz	47	297
622 MHz	$622 \mathrm{MB} / \mathrm{s}$	1 kHz to 5 MHz	26	40
2.488 GHz	2488 MB/s	5 kHz to 15 MHz	66	25
9.953 GHz	$9953 \mathrm{MB} / \mathrm{s}$	20 kHz to 80 MHz	161	15

Frequency modulation (E8257C only)

Phase modulation (E8257C only)

Maximum deviation	$\mathrm{N} \times 8 \mathrm{MHz}$
Resolution	0.1% of deviation or 1 Hz , whichever is greater
Deviation accuracy	$< \pm 3.5 \%$ of FM deviation +20 Hz (1 kHz rate, deviations $<\mathrm{N} \times 800 \mathrm{kHz}$)
Modulation frequency response	
Path	Rates (at 100 kHz deviation)
	1 dB Bandwidth $\mathbf{3 d B}$ Bandwidth (typical)
FM 1	dc/20 Hz to 100 kHz dc/5 Hz to 10 MHz
FM 2	dc/20 Hz to 100 kHz dc/5 Hz to 1 MHz
dc FM ${ }^{2}$ carrier offset	$\pm 0.1 \%$ of set deviation $+(\mathrm{N} \times 8 \mathrm{~Hz}$)
Distortion	$<1 \%(1 \mathrm{kHz}$ rate, deviations < N x 800 kHz)
Sensitivity	$\pm 1 \mathrm{~V}_{\text {peak }}$ for indicated deviation
Paths	FM1 and FM2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2. The FM2 path is limited to a maximum rate of 1 MHz . The FM2 path must be set to a deviation less than FM1.

Maximum deviation	$\mathrm{N} \times 80$ radians ($\mathrm{N} \times 8$ radians in high-bandwidth mode)
Resolution	0.1% of set deviation
Deviation accuracy	$< \pm 5 \%$ of deviation +0.01 radians (1 kHz rate, normal BW mode)
Modulation frequency response	
Mode	Maximum deviation Rates (3 dB BW)
Normal BW	$\mathrm{N} \times 80 \mathrm{rad}$ dc to 100 kHz
High BW	$\mathrm{N} \times 8 \mathrm{rad}$ de ${ }^{\text {d }}$ to 1 MHz (typical)
Distortion	< 1% (1 kHz rate, THD, dev < $\mathrm{N} \times 80$ rad, normal BW mode)
Sensitivity	$\pm 1 \mathrm{~V}_{\text {paek }}$ for indicated deviation
Paths	$\Phi \mathrm{M} 1$ and $\Phi \mathrm{M} 2$ are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2. The $\Phi \mathrm{M} 2$ path must be set to a deviation less than $\Phi \mathrm{M} 1$.

[^5]
Amplitude modulation ($\left.\mathrm{f}_{\mathrm{c}}>\mathbf{2 ~ M H z}\right)^{\mathbf{1}}{ }^{\text {(typical) }}$ (E8257C only)

External modulation inputs
(Ext1 \& Ext2)
(E8257C only)

Simultaneous modulation
 (E8257C only)

Internal modulation source (E8257C only)

Depth	Linear mode	Exponential (log) mode (Downward modulation only)
Maximum	> 90\%	$>20 \mathrm{~dB}$
Settable ${ }^{2}$	0 to 100%	0 to 40 dB
Resolution	0.1\%	0.01 dB
Accuracy (1 kHz rate)	$< \pm(6 \%$ of setting + 1 \%)	$< \pm(2 \%$ of setting $+0.2 \mathrm{~dB})$
Ext sensitivity	$\begin{aligned} & \hline \pm 1 \mathrm{~V}_{\text {peak }} \text { for } \\ & \text { indicated depth } \\ & \hline \end{aligned}$	-1 V for indicated depth
$\frac{\text { Rates (3 dB bandwidth, 30\% depth) dc }}{\text { Distortion (1 kHz rate, linear mode, THD) }}$		kHz (typical) (useable to 1 MHz)
		Distortion (1 kHz rate, linear mode, THD)
30\% AM	< 1.5\%	
90\% AM	< 4 \%	
Paths	AM1 and AM2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2.	

Modulation types	AM, FM, and ΦM
Input impedance	50 or 600Ω (nominal) switched
High/Iow indicator	
(100 Hz to 10 MHz BW, ac coupled inputs only)	Activated when input level error exceeds
	3% (nominal)

$\overline{\text { All modulation types may be simultaneously enabled except: FM with } \Phi M \text {, and linear AM with }}$ exponential AM. AM, FM, and Φ M can sum simultaneous inputs from any two sources (Ext1, Ext2, internal1, or internal2) Any given source (Ext1, Ext2, internal1, or internal2) may be routed to only one activated modulation type.

Dual function generators provides two independent signals (internal1 and internal2) for use with AM, FM, ΦM, or LF Out.	
Waveforms	Sine, square, positive ramp, negative ramp, triangle, Gaussian noise, uniform noise, swept sine, dual sine ${ }^{3}$
Rate range	0.5 Hz to 1 MHz
Sine	0.5 Hz to 100 kHz
Square, ramp, triangle	0.5 Hz
Resolution	Same as timebase
Accuracy	
LF out	Internal1 or internal2. Also provides monitoring of
Output	internal1 or internal2 when used for AM, FM, or ΦM.
Amplitude	0 to $3 \mathrm{~V}_{\text {peak, (}}$ (nominal) into 50Ω
Output impedance	50Ω (nominal)

Swept sine mode:
(frequency, phase continuous)
Operating modes Triggered or continuous sweeps
Frequency range $\quad 1 \mathrm{~Hz}$ to 1 MHz
Sweep rate $\quad 0.5 \mathrm{~Hz}$ to 100 kHz sweeps/s, equivalent to sweep times 10 us to 2 s
Resolution $\quad 0.5 \mathrm{~Hz}(0.5$ sweep/s)

[^6]Pulse modulation ${ }^{1}$ (E8257C only)

On/off ratio	Standard $>3.2 \mathrm{GHz}$ 80 dB (typical)	Standard 500 MHz to 3.2 GHz 80 dB	$\begin{aligned} & \text { Option 1E6 } \\ & \text { 10 MHz } \\ & \text { to } 3.2 \mathrm{GHz} \\ & 80 \mathrm{~dB} \end{aligned}$
Rise/fall times (Tr, Tf)	$10 \mathrm{~ns} \mathrm{(6} \mathrm{~ns} \mathrm{typical)}$	100 ns (typical)	$10 \mathrm{~ns} \mathrm{(8} \mathrm{~ns} \mathrm{typical)}$
Pulse width Internally leveled Level hold (ALC Off with power sea	$\begin{aligned} & \geq 1 \mu \mathrm{~s} \\ & \geq 20 \mathrm{~ns} \text { (typical) } \\ & \text { () }^{2} \end{aligned}$	$\geq 2 \mu \mathrm{~s}$ (typical) $\geq 0.5 \mu \mathrm{~s}$ (typical)	$\begin{aligned} & \geq 1 \mu \mathrm{~s} \\ & \geq 20 \mathrm{~ns} \text { (typical) } \end{aligned}$
Repetition frequency Internally leveled	10 Hz to 500 kHz (typical)	10 Hz to 250 kHz (typical)	10 Hz to 500 kHz (typical)
Level hold (ALC Off with power searc	dc to 10 MHz (typical) $)^{2}$	dc to 1 MHz (typical)	dc to 10 MHz (typical)
Level accuracy (relative to CW)			
Internally leveled	$\begin{aligned} & \pm 0.5 \mathrm{~dB} \\ & \pm 0.15 \text { (typical) } \end{aligned}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
Level hold	$\begin{aligned} & \leq 20 \mathrm{GHz} \pm 0.8 \mathrm{~dB} \\ & \text { (typical) } \end{aligned}$	$\pm 0.5 \mathrm{~dB}$ (typical)	$\pm 1.0 \mathrm{~dB}$ (typical)
(ALC Off with power search) ${ }^{2}$	$\begin{aligned} & \leq 40 \mathrm{GHz} \pm 1.2 \mathrm{~dB} \\ & \text { (typical) } \end{aligned}$		
Width compression	$\pm 5 \mathrm{~ns}$ (typical)	$\pm 50 \mathrm{~ns}$ (typical)	$\pm 5 \mathrm{~ns}$ (typical)
Video feed-through ${ }^{3}$	<2 mV (typical)	<200 mV (typical)	< 125 mV (typical)
Video delay (Ext input to Video)	40 ns (nominal)	40 ns (nominal)	40 ns (nominal)
RF delay (Tm) (Video to RF output)	35 ns (nominal)	280 ns (nominal)	45 ns (nominal)
Pulse overshoot (Vor)	< 10\% (typical)	< 10\% (typical)	$\begin{aligned} & <1 \mathrm{GHz} 20 \% \text { (typical) } \\ & \geq 1 \mathrm{GHz} 10 \% \text { (typical) } \\ & \hline \end{aligned}$
Input level	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ On	$+1 \mathrm{~V}_{\text {peak }}=$ RF On	$+1 \mathrm{~V}_{\text {peak }}=$ RF 0 n
Input impedance	50Ω (nominal)	50Ω (nominal)	50Ω (nominal)

[^7]Internal pulse generator (E8257C only)

Modes	Free-run, triggered, triggered with delay, doublet, and gated. Triggered with delay, doublet, and gated require external trigger source.
Period (PRI) (Tp)	70 ns to 42 s (Repetition frequency: 0.024 Hz to 14.28 MHz)
Pulse width (Tw)	10 ns to 42 s
Delay (Td)	0 to $\pm 42 \mathrm{~s}$
Free-run mode Triggered with delay and doublet modes 75 ns to 42 s with $\pm 10 \mathrm{~ns} \mathrm{jitter}$ Resolution	10 ns (width, delay, and PRI)

Td Video delay (variable)
Tw Video pulse width (variable)
Tp Pulse period (variable)
Tm RF delay
Trf RF pulse width
Tf RF pulse fall time
Tr RF pulse rise time
Vor Pulse overshoot
Vf Video feedthrough

Remote programming

General specifications

Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface.
Control languages	SCPI version 1997.0. Also will emulate most applicable Agilent $836 x \times$ comands, Agilent 837 xxB , and Agilent $8340 / 41 \mathrm{~B}$ systems which include these signal generators.
	SH1, AH1, T6, TE0, L4, LEO, SR1, RL1, PPO, DC1,
DT0, C0, E2.	

[^8]
Input/Output Descriptions

Front panel connectors

(All connectors are BNC female unless otherwise noted.) ${ }^{1}$

Rear panel connectors
(All connectors are BNC female unless otherwise noted.) ${ }^{1}$

RF output	Nominal output impedance 50Ω.
For 20 GHz models	Precision APC-3.5 male, or Type-N with Op
For 40 GHz models	Precision 2.4 mm male; plus $2.4-2.4 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adaptors also included.
ALC input	Used for negative external detector leveling. Nominal input impedance $120 \mathrm{k} \Omega$, damage level $\pm 15 \mathrm{~V}$.
LF output (E8257C only)	Outputs the internally generated LF source. Nominal output impedance 50Ω.
External input 1 (E8257C only)	Drives either AM, FM, or Φ. Nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
External input 2 (E8257C only)	Drives either AM, FM, or ΦM. Nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
Pulse/trigger gate input (E8257C only)	Accepts input signal for external fast pulse modulation. Also accepts external trigger pulse input for internal pulse modulation. Nominal impedance 50Ω. Damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
Pulse video out (E8257C only)	Outputs a signal that follows the RF output in all pulse modes. TTL-level compatible, nominal source impedance 50Ω.
Pulse sync out (E8257C only)	Outputs a synchronizing pulse, nominally 50 ns width, during internal and triggered pulse modulation. TL-level compatible, nominal source impedance 50Ω.
Auxiliary interface (Dual mode)	Used for RS-232 serial communication and for Master/Slave source synchronization. (9-pin subminiature female connector).
GPIB	Allows communication with compatible devices.
LAN	Allows 10BaseT LAN communication
10 MHz input	Accepts an external reference (timebase) input (at 1, 2, $2.5,5,10 \mathrm{MHz}$ for standard and 10 MHz only for Option UNR) Nominal input impedance 50Ω. Damage levels > +10 dBm
10 MHz output	Outputs internal or external reference signal. Nominal output impedance 50Ω. Nominal output power +8 dBm
Sweep output (Dual mode)	Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nominal) at the end of sweep, regardless of sweep width.
	When connected to an Agilent 8757D Scalar Network Analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nominal) across a ramp (analog) sweep. Number of pulses can be set form 101 to 1601 by remote control from the 8757D.
	Output impedance: $<1 \Omega$, can drive 2000Ω.

[^9]| Stop sweep In/Out | Open-collector, TTL-compatible input/output. In ramp
 sweep operation, provides low level (nominally 0 V)
 during sweep retrace and bandcross intervals, and high
 level during the forward portion of the sweep. Sweep |
| :--- | :--- |
| | will stop when grounded externally, sweep will resume
 when allowed to go high. |
| Trigger output (Dual mode) | Outputs a TTL signal. High at start of dwell, or when
 waiting for point trigger; low when dwell is over or point
 trigger is received, In ramp sweep mode, provides 1601
 equally-spaced 1us pulses (nominal) across a ramp sweep.
 When using LF Out, provides 2 us pulse at start of LF sweep. |
| Trigger input | Accepts TTL signal for triggering point-to-point in manual
 sweep mode, or to trigger start of LF sweep. Damage |
| levels $\geq+10 \mathrm{~V}$ or $\leq-4 \mathrm{~V}$. | |

Options, Accessories, and Related Products

Model/option	Description
E8247C/57C-520	Frequency range 250 kHz to 20 GHz
E8247C/57C-540	Frequency range 250 kHz to 40 GHz
E8247C/57C-UNR	Enhanced close-in phase noise
E8257C-1E6	Narrow pulse modulation below 3.2 GHz
E8247C/57C-007	Ramp (analog) sweep
E8247C/57C-1ED	Type-N (f) connector (20 MHz models only)
E8247C/57C-1EM	Moves all connectors to rear panel
E8247C/57C-1CM	Rack mount kit
E8247C/57C-1CN	Front handle kit
E8247C/57C-1CP	Rack mount kit with front handle kit
E8247C/57C-H3O	Frequency upconversion of RF signals
E8247C/57C-HEH	Inprove low band harmonics (from 10 MHz to 2.0 GHz)
83554A	Millimeter-wave source module (26.5 to 40 GHz)
83555A	Millimeter-wave source module (33 to 50 GHz)
83556A	Millimeter-wave source module (40 to 60 GHz)
83557A	Millimeter-wave source module (50 to 75 GHz)
83558A	Millimeter-wave source module (75 to 110 GHz)
8120-8806	Master/slave interface cable
9211-2656	Standard transit case
9211-7481	Tote-style transit case (includes wheels and telescoping handle)

Web Resources

www.agilent.com/find/psg

Related Agilent Literature

PSG Signal Generators, Brochure
Literature number 5989-1324EN

E8267C PSG Vector Signal Generator, Data Sheet
Literature number 5988-6632EN

PSG Self Guided Demo
Literature number 5988-2414EN

E8247C/57C PSG CW and Analog Signal Generatos, Configuration Guide
Literature number 5988-7879EN

E8267C PSG Vector Signal Generator, Configuration Guide
Literature number 5988-7541EN
PSG Series Product Note: Millimeter Head
Literature number 5988-2567EN

PSG Two-Tone and Multitone Application Note AN 1410
Literature number 5988-7689EN

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States: (tel) 8008294444 (fax) 8008294433 Canada: (tel) 8778944414 (fax) 8007464866 China:
(tel) 8008100189
(fax) 8008202816 Europe:
(tel) 31205472111
Japan:
(tel) (81) 426567832 (fax) (81) 426567840

Korea:

(tel) (080) 7690800 (fax) (080)769 0900 Latin America: (tel) (305) 2697500 Taiwan: (tel) 0800047866 (fax) 0800286331 Other Asia Pacific Countries: (tel) (65) 63758100 (fax) (65) 67550042 Email: tm_ap@agilent.com Contacts revised: 11/08/06

Product specifications and descriptions in this document subject to change without notice. © Agilent Technologies, Inc. 2002, 2003, 2005, 2007 Printed in USA, February 8, 2007
5988-7454EN

[^0]: 1. Useable to 100 kHz .
 2. In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep speeds. Refer to ramp sweep specifications for more information.
 3. To within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz .
 4. To optimize phase noise use $5 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
[^1]: 1. During Ramp sweep operation, AM and Pulse Modulation are useable but not specified; FM, Phase Modulation, Wideband AM and I/Q modulation are not useable.
 2. Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than $[0.00004 \%$ of carrier frequency or 140 Hz] [sweep time in seconds]. Actual span will always be displayed correctly.
 3. Typical accuracy for sweep times $>100 \mathrm{~ms}$ can be calculated from the equation: $[(0.005 \%$ of span)/(sweep time in seconds) $\pm \pm$ timebase. Accuracy is not specified for sweep times < 10 ms .
 4. For Master/Slave operation use Agilent Technologies part \#8120-8806 Master/Slave interface cable.
 5. When measuring low-pass devices in AC mode, dynamic range may be reduced up to 10 dB below 3.2 GHz
 6. GPIB system interface is not supported with $8757 \mathrm{~A} / \mathrm{C} / \mathrm{E}$, only with 8757 D . As a result, some features of 8757A/C/E, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.
[^2]: 1. Maximum power specification is warranted from 15 to $35^{\circ} \mathrm{C}$, and is typical from 0 to $15^{\circ} \mathrm{C}$. Maximum power over the 35 to $55^{\circ} \mathrm{C}$ range typically degrades less than 2 dB .
 2. To within 0.1 dB of final amplitude within one attenuator range
 3. Specifications apply in CW and List/Step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range. Degradation outside this range, for power levels $>-10 \mathrm{dBm}$, is typically $<0.3 \mathrm{~dB}$. In Ramp sweep mode (with Option 007), specifications are typical. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz .
[^3]: 1. Specifications apply in CW and List/Step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range, with attenuator hold off (normal operating mode). Degradation outside this range, for ALC power levels $>-10 \mathrm{dBm}$, is typically $<0.3 \mathrm{~dB}$. In Ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz . Level accuracy is not specified below -110 dBm.
 2. Compatible with Agilent Technologies EPM Series (E4418B and E4419B) power meters.
[^4]: 1. Specifications for harmonics beyond maximum instrument frequencies are typical.
 2. Specifications for sub-harmonics beyond maximum instrument frequencies are typical.
 3. Performance is typical for spurs at frequencies above the maximum operating frequency of the instrument. Specifications apply for CW mode only. Performance typically is -60 dBc between 200 and 250 MHz .
 4. For instruments with serial number prefixes below MY4330 or US4330, the specification is $-136 \mathrm{dBc} / \mathrm{Hz}$.
[^5]: 1. Calculated from phase noise performance in CW mode only at +0 dBm . For other frequencies, data rate, or bandwidths, please contact your sales representative.
 2. At the calibrated deviation and carrier frequency, within $5^{\circ} \mathrm{C}$ of ambient temperature at time of user calibration.
[^6]: 1. For $\mathrm{f}_{\mathrm{c}}<2 \mathrm{MHz}$ AM is usable but not specified. AM specifications apply with ALC on, and envelope peaks < maximum specified power. For instruments without Option 1E1 attenuator, specs apply for carrier amplitude $>-2 \mathrm{dBm}$.
 2. For AM depth settings $>90 \%$ or $>20 \mathrm{~dB}$, deep AM mode or 1 kHz ALC BW is recommended.
 3. Internal2 is not available when using swept sine or dual sine modes.
[^7]: 1. With ALC off, specs apply after the execution of power search. For instruments without a step attenuator, specs apply between 0 and +10 dBm . For instruments with the step attenuator, specs apply with Atten Hold Off, or ALC level between 0 and +10 dBm .
 2. Power search is a calibration routine that improves level accuracy in ALC-off mode. Un-pulsed RF power will be present typically up to 50 ms when executing power search.
 3. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.
[^8]: 1. Storage below $-20^{\circ} \mathrm{C}$ instrument states may be lost.
[^9]: 1. Digital inputs and output are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.
 2. Digital inputs and output are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.
